If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+48x+30=0
a = 9; b = 48; c = +30;
Δ = b2-4ac
Δ = 482-4·9·30
Δ = 1224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1224}=\sqrt{36*34}=\sqrt{36}*\sqrt{34}=6\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-6\sqrt{34}}{2*9}=\frac{-48-6\sqrt{34}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+6\sqrt{34}}{2*9}=\frac{-48+6\sqrt{34}}{18} $
| 534=s2 | | 12(2+y)=5(2y+8) | | 7u7u7u7u7u7u7u-8u=24u | | 6u=7u-4 | | 2x/3=(x+14)/5 | | 2x(5)=3x+42 | | 5+y+24=-36 | | 356=s2 | | 240=x*5640 | | x+19=-3x+51 | | 3(y-6)2=48 | | (x+7)=(3x-29) | | 4(x+6)-2(x+8)=40 | | 3y-20=2y+30 | | 4.25n=3.5n+36 | | s=33^2+636 | | x³-7x²+11x-5=0 | | 4b+5=1+5b4b+5=1+5b4 | | 4x+3=2+7 | | -2(3-1)+3(j+4)=4 | | (t+3)=2(t+5)=34 | | 1210=s2 | | 7-3x=-4x=13 | | 1,210=s2 | | 14/40=x/20 | | 8x2+15x-27=0 | | 20-2x=-15 | | X=t+1 | | 1/2(5x)=20 | | 1/3x+2/5=1/5 | | 4x+1+5x+1=54 | | 6^(6x-4)=46 |